第二题是道解析几何,看似图形繁琐计算量大,但其实思路并不算太复杂,至少跟第一题有点考验运气比起来,第二题算得上是道中规中矩的奥数题——难,却有规律可循。
设直线方程配合韦达定理,设点、设参数方程;
求出的动点坐标所要满足的参数方程很复杂无从下手?坐标平方乘系数再相加就不复杂了;
二维齐次坐标仿射变换很难?用行列式来解就不难了嘛——当然,前提是对不变量的平移、旋转和反射得心应手;
最后还是有些函数难以求出?那偶尔也可以用点简单粗暴的办法嘛——算呗!
暴力求导呗!
没有什么解析几何是用计算解决不了的,如果有,那就用两颗脑袋同时算——就像现在的张伟这样:
“意识分裂!”
两个意识同时运转,用强大的脑力一路碾压过去!
什么,你说用两颗脑袋暴力运算属于作弊?对不起,没被抓到的可不能叫作弊,拥有这种“人无我有”的技能,那得叫“天赋异禀”好吧!
即使使用了“意识分裂”,但完整的解答出第二题,还是花了张伟一个半小时,由此可以想象,对于其他没有这项天赋的考生来说,他们要解出这道题,恐怕得将屎都给算出来......
至此,第一题和第二题就都解答出来了,只是这过程实在有些辛苦——很明显,今天的卷子难度,比昨天的还要更大!
不过好在,张伟已经走到最后一步了。
最后一题很有意思,因为他看起来更像是一道语文题而不是数学题:
问题:一个猎人和一只隐形的兔子在欧式平面上玩一个游戏。已知兔子的起始位置Ao和猎人的起始位置Bo重合,在游戏进行n-1回合之后,兔子位于点An-?,而猎人位于Bn-?.在第n个回合中,以下三件事情一次发生:
(1).兔子以隐形的方式移动到一点An,使得点An-?和点An之间的距离恰为1.
(2).一个定位设备向猎人反馈一个点Pn,这个设备唯一能够向猎人保证的事情是,点Pn和点An之间的距离至多为1.
(3).猎人以可见的方式移动到一点Bn,使得Bn-?和点Bn之间的距离恰为1.
试问:是否无论兔子如何移动,也无论定位设备反馈了哪些点,猎人总能够适当的选择他的移动方式,使得在109回合之后,他能够确保和兔子之间的距离至多是100?
是不是读起来一头雾水?反正张伟审完一遍题之后是这样的。
如果语文能力差一点的,恐怕连看懂这一题都很难!
在奥数赛场上,张伟第一次庆幸于自己是个文科生——还是个拥有“初级语言精通”的文科生!
首先得理解题目的含义,绝对不能把题目理解成兔子有必胜策略——如果有人语文学习不过关这样理解了,那他接下去无论怎么尝试都是徒劳的,因为这意味着从一开始,他的方向就选错了啊!
第一步,张伟先分析了一下“试问”文字背后的含义,在不改变题目含义意义下,得到了两个等效原理:
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:王爷,王妃卷款潜逃了 总裁的替嫁丑妻 深宫娇宠 臣应不识君 狐色生香 绝美女厂长 溺爱鲜妻:隐婚老公放肆宠 私房美容师 无敌剑装 婚为上计:这个总裁我要了 萌上天命贵女:帝妃本色 忠犬法则:季先生,请留步 闪婚甜宠:傲娇总裁体力好 有盗将行 农门小医后 高冷王爷掌上妃 魔尊总是不在线 太子妃上位攻略 夜少的二婚新妻 危情密爱:甜宠娇妻乖一点